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Category arguments

Nowhere differentiable functions

Theorem. (Banach, 1931) The set of nowhere differentiable
functions is a comeager subset of C [0, 1].

Existence

Corollary. There exists a nowhere differentiable continuous
function.

Level sets

Theorem. (Bruckner, Garg, 1977) For comeager many f ∈ C [a, b]
there exists a countable dense A ⊂ (min(f ),max(f )) such that for
every y ∈ (min(f ),max(f )) \ A the set f −1(y) is perfect and for
y ∈ A the set f −1(y) is a perfect set and an isolated point.
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Measure theoretic analogs

Question

What is the natural measure on C [0, 1]?

Invariance

Definition. Let (G ,+) be a Polish abelian topological group and µ
is a Borel measure on G . We say that µ is a Haar measure on G if

for every t ∈ G and B ⊂ G Borel µ(B) = µ(t + B).

µ is Borel regular, for every K compact µ(K ) <∞
µ is continuous

Haar measure

Theorem. (Haar, Weil) Let (G ,+) be a Polish abelian topological
group. There exists a nontrivial Haar measure on G if and only if
G is locally compact. Moreover, if µ exists then it is unique up to
a multiplicative constant.
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Generalization of N

Shy sets

Definition. (Christensen, 1972) Let (G ,+) be a Polish abelian
group and S ⊂ G . We say that S is shy if there exists a universally
measurable U ⊃ S and a continuous Borel probability measure µ
on G such that for every t ∈ G we have µ(t + U) = 0.

Relation to Haar measures

Proposition. Suppose G is locally compact. Then S is shy if and
only if µ(S) = 0, where µ is the Haar measure on G .

Further properties

Proposition. For any Polish abelian group G the shy subsets of G
form a σ-ideal.
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Possible variations

Naive approach

Let SNaive = {A ⊂ G : (∃µ)(∀t ∈ G )(µ(A + t) = 0)}.

In fact, SNaive is not necessarily an ideal.
Proposition. (CH) If E ⊂ (Zω)2 is a well ordering of Zω, then
E ∪ E c = (Zω)2, but E is naively shy.
Under V = L it can be chosen ∆1

2.

Negative results

Theorem. (Elekes, Steprans) There exists a non Lebesgue-null
H ⊂ R and a continuous Borel probability measure µ such that
∀t ∈ R we have µ(t + H) = 0.
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Possible variations

Definition of shy sets with Γ-hull

Let G be a Polish abelian group, and Γ ⊂ P(G ). We say that a set
S is shy with a Γ-hull if

(∃µ)(∃H ∈ Γ)(∀t ∈ G )(µ(H + t) = 0) ∧ S ⊂ H).

This family is denoted by SΓ.

In particular, SNaive = SP(X ) and the original definition of shyness
gives SUM.
Obviously, SΠ0

α
⊂ S∆1

1
⊂ SΣ1

1
⊂ SUM ⊂ SP(X ).

If G locally compact then SGδ
= SUM.

Elekes and Steprans ⇒ in R we have
SΠ0

2
= S∆1

1
= SΣ1

1
= SUM $ SP(X ).
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Further known results

Def: SΓ = {S : (∃µ)(∃H ∈ Γ)(∀t ∈ G )(µ(H + t) = 0) ∧ S ⊂ H)}.

SΠ0
α
⊂ S∆1

1
⊂ SΣ1

1
⊂ SUM $CH SP(X ).

A positive statement

Theorem. (Solecki, 1996) For every Σ1
1 shy set there exists a shy

∆1
1 hull.
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Cardinal characteristics
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then cof (SUM) > c.
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Definability of the counter-examples

Π1
1 example in L

Theorem. (Z. V.) There exists a Π1
1 set H ⊂ Zω such that H is

shy but there is no Σ1
1 shy set containing it.

Corollary. (V = L) S∆1
1
6= SΠ1

1
.

Proof

Take H = {x : x ∈ Lωx
1
}. Then

H is Π1
1 and does not contain a perfect subset

intersects every ≤h-cofinal F ∈ Π1
1

⇒ enough to prove that every prevalent (co-shy) Π1
1 is ≤h-cofinal.
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Towards Con(S∆1
1

= SΠ1
1
)

Solecki’s S∆1
1

= SΣ1
1

Theorem. (First reflection) Suppose that X is Polish and
Φ ⊂ P(X ) is Π1

1 on Σ1
1. If A ∈ Φ ∩Σ1

1 then ∃B ∈ Φ ∩∆1
1 such

that A ⊂ B.

Fix a µ measure on a Polish abelian group G and let
cµ(A) = sup{µ(A + t) : t ∈ G}, A ∈ Φµ ⇐⇒ cµ(A) = 0.

Bounded reflection

Definition. If Φ ⊂ P(X ) is a Π1
1 on Σ1

1 ideal, we say that it
satisfies bounded reflection, if there exists an ordinal γ < ω1 such
that for every B ∈ Φ ∩∆1

1 then ∃D ∈ Φ ∩Π0
γ with B ⊂ D.

Preservation of category

Definition. A σ-ideal Φ ⊂ P(X ) preserves category if whenever
B ⊂ X × Y is Borel then ∀∗∀ΦB(x , y)⇒ ∀Φ∀∗B(x , y).
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Towards Con(S∆1
1

= SΠ1
1
)

Positive result

Theorem. (Clemens, Zapletal) (∀x(x# exists)) Suppose that a
σ-ideal Φ preserves category and Π1

1 on Σ1
1. Then bounded

reflection implies Π1
1-reflection (i.e. A ∈ Φ∩Π1

1 then ∃B ∈ Φ∩∆1
1

such that A ⊂ B.)

Preservation of measure

Theorem?? Suppose that a σ-ideal Φ preserves measure and Π1
1

on Σ1
1. Then bounded reflection implies Π1

1-reflection (i.e.
A ∈ Φ ∩Π1

1 then ∃B ∈ Φ ∩∆1
1 such that A ⊂ B.)
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Towards Con(S∆1
1

= SΠ1
1
)

Remark

Proposition. For a fixed Borel measure µ the set Φµ is a measure
preserving Π1

1 on Σ1
1 σ-ideal.

Corollary

If the previous theorem holds then we have:

Suppose that for every fixed measure µ there exists a γ < ω1 such
that every Borel shy set with witness µ is contained in a Π0

γ shy
set with witness µ ⇒
Every Π1

1 shy set is contained in a Borel shy set.
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1 shy set is contained in a Borel shy set.
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Towards Con(S∆1
1

= SΠ1
1
)

Capacities

Definition. Suppose that X is a Hausdorff space. A capacity on
X is a map c : P(X )→ [0,∞] such that

1 A ⊂ B implies c(A) ≤ c(B)

2 A0 ⊂ A1 ⊂ · · · ⇒ c(An)→ c(∪An)

3 for any compact K ⊂ X , c(K ) <∞ and if c(K ) < r then
there exists an open U ⊂ K such that c(U) < r .

Capacitability

Definition. A set A is c-capacitable if c(A) = sup{c(K ) : K ⊂ A
compact}.
Theorem. (Choquet) In a Polish space every Σ1

1 set is
c-capacitable for every c capacity.
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Towards Con(S∆1
1

= SΠ1
1
)

Relation to shy sets

Proposition. Let X = Zω. Fix µ, there exists a capacity c̄µ such
that c̄µ(B) = cµ(B) = sup{µ(B + t) : t ∈ Zω} for every Borel B.

Corollary

We have obtained again S∆1
1

= SΣ1
1
.

Capacitability of Π1
1 sets

Proposition. Π1
1 sets are not universally capacitable.
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Questions

Question. What are the exact relations in the following equation:
SΠ0

α
⊂ S∆1

1
= SΣ1

1
$V=L SΠ1

1
$MA SUM $CH SP(X )?

Question. (PD) Does SGδ
= S∆1

1
directly imply S∆1

1
= SΠ1

1
?

Complementary questions

Question. Is it true that every analytic non-shy set contains a
Borel non-shy set?
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Thank you!
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